
NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-010

WVU- SRL-96-010

WVU-SC S-TR-96- i 9

CERC-TR-TM-96-0 ! 0

s , r5 7

..'// 2" • I -_ :_ /_v

Tile Verificafi_n-base¢_ A_alysis of Reliable Multicast Protocol

Problem Report

by Yii;.!.qi'_:g Wu

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

iaboffsh Date

r, Software Engineering

John R. Callahan Date

WVU Principal Investigator

The Verification-based Analysis of Reliable

Multicast Protocol

Problem Report

Yunqing Wu

Submitted in partial fulfillment of the requirements

for the degree of Masters of Science

Department of Statistics and Computer Science

College of Arts and Sciences

West Virginia University
December, 1995

The Verification-based Analysis of Reliable Multicast Protocol 1

Chapter 1 Introduction 2

Chapter 2 Reliable Multicast Protocol
2.1 Introductionto RMP

2.2 RMP operations

2.3 RMP specifications

4

4

5

7

Chapter 3 Verification Strategy and Process Model
3.1 Introduction to protocolverification

3.2 Verification Methods and Our Early Experience

3.3 Theorem Prover

3.4 Model Checkers

3.4.1 SMV

3.4.2 Murphi

3.4.3 SPIN tool

3.5 Our Verification Strategy and Process Model

11
11

12

14

16

17

17

19

21

Chapter 4 Formal Models of RMP
4.1 The Single-Site Murphi Model

4.1.1 Some Simplifications
4.1.2Minimal StateVariables

4.1.3StateTransitionRules and Actions

4.1.4Deadlock Avoidance

4.1.5 Verification Analysis and State Invariants

4.2 Multiple-Site SPIN Model

4.2.1 The Need for Multiple-Site Model

4.2.2 Some Simplifications

4.2.3 Results

4.2.4 Future Directions

24
24

24

26

27

28

31

33

33

34

37

39

Chapter 5 Test Cases Generation
5.1 Conformance Testing and Testing Strategy

5.2 Test script generation

5.3Discussion

41
41

42

44

Chapter 6 Conclusion
Bibliography

Appendix

45
46

48

The Verification-based Analysis of

Reliable Multicast Protocol

Abstract

Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic,

totally ordered, reliable multicast service on top of unreliable IP Multicasting. In this paper,

we develop formal models for RMP using existing automatic verification systems, and

perform verification-based analysis on the formal RMP specifications. We also use the

formal models of RMP specifications to generate a test suite for conformance testing of the

RMP implementation. Throughout the process of RMP development, we follow an

iterative, interactive approach that emphasizes concurrent and parallel progress between

the implementation and verification processes. Through this approach, we incorporate

formal techniques into our development process, promote a common understanding for the

protocol, increase the reliability of our software, and maintain high fidelity between the

specifications of RMP and its implementation.

Intmduaion

Chapter 1 Introduction

Many software engineering papers that discuss software quality begin with a phrase like

"Software is always delivered late, over budget and full of errors." [GANN94] As software

becomes more sophisticated and complex, the task of producing correct, reliable and high-

standard software remains difficult. As computers become cheaper, smaller, and more

powerful, they become more pervasively spread out in modern society and play more

important roles in every aspect of our lives. Since nowadays, most computers axe

interconnected by a network, a failure of software has far more reaching effect. It is clear

that the need for building correct software systems become more demanding.

Formal verification and validation is one effective way to improve the software quality.

Since its creation in 1950s, much progress has been made[GANN94], but the software

industry is still reluctant to accept formal methods. Formal methods are perceived as

impractical and not cost-effective. The reasons for this perception could be many-fold, but

one obvious shortcoming of current practices is the separation of formal verification and

the actual implementation of the software itself. The formal methods can be used to check

the logical consistency and completeness of designs and specifications, but this use has not

been integrated into the entire life-cycle of software development. Formal models of a

design are often developed and then abandoned in the later phases of development. When

change occurs, we have to modify the code and the formal models independently. This not

only increases the cost of development, but also deepen people's impressions about the

limits of formal methods.

Immdtx:tkm

In this paper,we proposea new software development process that integrates formal

methods into the entire life cycle of the software development. In the requirement and

design phases, formal methods serve to model changes of software designs before the

implementation and provide checks for completeness and consistency. During the coding,

however, formal models can be refined along with the implementation of the specifications.

For instance, pragmatic issue such as performance may require design decisions to be

reconsidered. Any problem detected by formal models are fedback to designer and changes

are reflected in the specifications. In parallel, implementation can be modified at the early

stage. In the later life cycle, the same formal models can be used to generate a test suite fox

functional testing of the implementation. Using this approach, we can achieve high fidelity

between the specifications, formal models, and the implementation. We practiced this

process in the development of a complex internet protocol, and we believe that this process

helped us to improve the quality of our software. In our case, we used existing automatic

verification tools to verify the design of the protocol. During the implementation, we

manipulate the models in order to analyze the protocol with respect to the desired

properties. In the later phases, we used the same formal models to generate test cases fox

conformance testing of the protocol independently.

In the next chapter, we first introduce the reliable multicast protocol and describe the way

we use to specify the protocol operations. Then in the Chapter 3, we review existing

verification tools and outline our verification strategies based on these tools. We present

our Reliable Multicast Protocol (RMP) formal models in Chapter 4. These formal models

are based on different level of abstraction and are developed for different verification tools.

They help us to verify different parts of the specifications by using different levels of

abstraction. In Chapter 5, we discuss test cases generation by the formal models. Finally we

conclude with a short discussion in Chapter 6.

golticaat Protocol

Chapter 2 Reliable Multicast Protocol

2.1 Introduction to RMP

Multicasting is a technique used to pass copics of a single packet to a subnet of all possible

destinations. The Reliable Multicast Protocol (RMP) is a communication protocol that

provides a totally ordered, reliable, atomic muldcast service on top of an unreliable IP

multieast service. RMP is based on the set of Reliable Broadcast Protocols presented by J.

M. Chang and N. F. Maxemchuk [CHAN84]. RMP is designed to be a transport level

protocol that provides reliable datagram delivery on top of a unicast or multicast unreliable

datagram services. The main goal is to provide high throughput for totally ordered

messages with low latency. It provides a transport mechanism by which the user can design

and implement fully distributed, fault-tolerant applications without the need to deal with

the lower level primitives of communication. Since RMP is aimed at providing a translXm

level service, performance is a very high priority. RMP provides the following features

[MONT94]:

• High throughput for totally ordered messages with low latency

• V'mual Synchrony

• Support of process group models

• Efficient changes to the process group

• Scalability of process groups

• Flexibility of choice for resiliency and fault-tolerance level

f_tat_ Mull_ast Protocol

Here, by virtual synchrony, we mean that all sites will receive the same set of messages

before and after a group membership change. In this way, a distributed application can

execute as if its communication was synchronous, when it is actuaUy asynchronous. Our

RMP implementation shows excellent scalability: its single data sender throughput stays

roughly constant as the number of destinations increases. RblP also offers different quality

of services (QoS) levels: from unreliable, totally ordered, majority resilient to totally

resilient.

2.2 RMP operations

RMP is operated in two distinguished modes: a normal operation mode and a recovery

mode. In the normal operation mode, RMP handles delivery of the data packets, token

passing of the token, acknowledgment of data packets and membership changes. The

protocol provides its primary services in the normal operation mode. The protocol switches

from the normal operation mode into the recovery mode whenever a site detects a failure

and triestorecoverfrom thefailure.Afterthe new ringhas been successfullyreformed and

synchronizedtothe same point,the protocoltransitsintothe normal operationmode once

again.

To illustrate the RMP operations, let us see a simple example. Supposed that a RMP token

ring has been formed with three members: A, B and C. Currently, the site B is the token

site. Site A sends a message with sequence number 1 and almost simultaneously site C

sends a message with sequence number 1 as welL Site B sees the site A message just

before the site C message and therefore orders the two message by sending an ACK,

ACK((A, 1), (C, 1), C, 1). The ACK will be placed in the imposed order with a fimesmmp of

1. The dam messages will also be placed in the o_ier with timestamps of 2 and 3. These

timestamps are implied because of the order they are placed in within the ACIL The new

token site is C. If site C does not see any more data within a given time period and it

MolticmaProkx_

EVENT ORDER:

DATA(A,I)
DATA(C, l)
ACK((A, I), (C, 1), C, 1)
AOC(NULL A, I)
LCR(C< Remove, 2)
NL((C,2), B,5)

Impose_i Order.

i ACK((A,D, (C,1),C,D
2 DATA(A, I)
3 DATA(C, I)
4 ACK(NULL A, 4)
5 NL((C_), B, 5)

_ DATA(A, I)

_CK((A,D, (C,D,C,I)

Multicast

Media

LCR(C, Remove, 2)C_

Figure 1. RMP normal operation example

generatesatokenpassalarm and createaNULL ACK with timcstamp 4 and pass thetoken

to siteA. Now sitesC decided thatitwants toremove itselffrom the ring.To perform this

operation,siteC sends an LCR O_,istChange Request)thatcontainsa sequence number of

2, ordering it with respect to the first message from the site C, and requesting site C to be

removed from the ring. Because site A is the current token site, site A generates a new list,

NL((C,2), B, 5), that does not contain site C in it and sends the new list to the ring. As a

consequence of generating the new list, the token is passed to site B. The new list is ordered

within the global ordering by being given a timestamp of 5. The new list that was generated

corresponds with the LCR sent from site C with a SOCl_ number of 2.

The above example explains how the protocol operates in the normal operation mode. If

any site detects a failure during the normal operation mode, it will multicast a recovery start

Rolial_ Mullica._P_

packet and all sites switch into the recovery operations after receiving the recovery start

packet. The whole recovery process is a two step process. The first step is the generation

and synchronization of a valid new token list. The second step is the installation of this new

token list at each site. The fault-detecting site will act as a Reform Site and will send out

the Recovery Vote packet to each site member. All other sites will act as slaving sites for

the recovery process and respond to the Recovery Vote packet by sending their votes. Each

site's vote packet contains their highest delivered timestamp, called SynchTSP. The

Reform Site will keep on counting members' votes and sending out new recovery packet if

the certain sites fail to respond within a given time period. After all active site members

sent their votes and all sites synchronize to a common SynchTSP, the Reform Site will

create a valid New List based on the votes collected. Upon receiving New List packet, each

slave site responds with a ACKNL packet and commit the New List in the current token

ring. If the Reform Site receives all ACKNL packets from all members in the New List, the

new ring has been successfully formed and conseqnenfly sends out a NULL ACK packet

to start the rotation of token among the new token ring. During the process of the recovery,

if an error happens or some sites fag to respond within certain time limit or within certain

number of trials, the recovery will be aborted and every site transit into Recovery Abort

state. In this state, each site waits for a random time-out to start a new round of recovery

operation. The overall goal is to provide the best possible reformation of the token ring

upon the failure of certain sites. The more detailed descripdon of the whole recovery

operation can be found in the RMP distribution documents.

2.3 RMP specifications

A complete specification of the protocol contains several parts. Among them are the

description of the service the protocol provides, the assumptions about the environments in

which the protocol is executed, the vocabulary of messages used to implement the protocol,

the format of each message and the procedure rules guarding the consistency of message

7

P,agat_ Moltic_ Pr_x:z_

exchanges. The complete set of specifications can be found in the RMP distribution files.

The verification and validation of the protocol is mostly devoted to the design and the

validation of unambiguous sets of _x:edu_ rules governing the exchange of messages and

the operation of the protocol.

Most protocols can be easily described as a state machine. Design criteria can also be

expressed in terms of desirable or undesirable protocol states and state transitions. A finim

state machine is usually specified in the form of a transition table, which contains the

current control state the machine is in, the condition on the environment of the machine

(input signals), the u'ansition effect on the environment (output signals), and the new state.

The protocol is specified using a variant of SCR requirement spccificanon table [HEN80]

that we call mode table. The mode table for RMP specifies the policy that a network site

used to respond to protocol events. Each operation is characterized by the current mode, the

current event and the conditions satisfied by the current state, the transition taken by the

system and the corresponding actions. In a complete RMP specifications, the system can

be in any of the following 12 states: {TS, NTS, GP, PT, JR, LR, NIR, SR, CNL, SV,

ACKNL, AR }. Each RMP site keeps its own three data structures: Data Queue, Ordering

Queue and the Event Queue. Data Queue is a FIFO queue used to hold data packets as they

arrive until they are delivered to application. The Ordering Queue is used for ordering data

packets based on their timestamps. Events axe dequeued from the Event Queues and

serviced according to the specifications. There are 18 different events in RMP

specifications: {DATA, ACK, NACK, CONF, NMD, NMA, NL, LCR, RecStart, RecVote,

RecAbort, Failure, TPA, C'FPA, RTA, MandLv, CommitNI.., JoinReq }. The entire RMP

specification describes the transition and _g actions for a site in any of the 12

states under the 13 different events. Typically, a site's actions include placing the data

packet in the Data Queue, adding ACK packets in the Ordering Queue, updating the

Ordering Queue, passing the token and multicast or unicast certain packets. Here updating

e Muitice Pra¢ocoi

the Ordering Queue implies identifying the corresponding data packets from the Data

Queue and sending out NACK packets for missing data packets. Another important action

is passing the token. It is taken whenever a site is named as a token site and its ordering

queue is consistent. If the token can he successfully passed, an ACK will he generated and

Multicast to all members. Correspondingly, the token is passed to next site. A positive

acknowledgment policy governs the sending of some packets: the source site will keep on

retransmitfing the packet until certain condition occm_. The details of this policy can be

found in the RMP specifications.

Table 1: RMP Normal Operation Specifications

NTS

NTS

NTS

ACK

ACK

ACK

ACKNTS

Not NamedTS

NamedTS

OrderQ Consistent
Token Passed

NamedTS

OrderQ Consistent
Token Not Passed

NamedTS

OrderQ Inconsistent

PT

"IS

NTS

PT

Add ACK in OrderQ

Update OrderQ

Add ACK in OrderQ

Update OrderQ
PassToken

Add ACK inOrderQ

Update OrderQ
PassToken

Add ACK to OrderQ

Update OrderQ

Table I shows a partofmode tablefortheprotocoloperations.The siteisin theNTS (Not

Token Site) state under the ACK event (the receipt of Acknowledgment packet). If an ACK

event occurs and the site is not named as the next token site, the site will simply put ACK

packet into Ordering Queue, update the Ordering Queue and stays in NTS state. If ACK

packet names the current site as the next token site, the cm-rent site will first put the packet

in the Ordering Queue, update the Ordering Queue, and try to pass the token to the next site.

9

ReliableMultica_ Pr_x_

If the token is successfully passed and the Ordering Queue is consistent up to the current

time stamp, the site transits to PT (Passing Tokensite) state. If the Ordering Queue is

consistent and the token has not been passed, it transits into TS (Token Site) state. FmaUy,

ff the site is named as the next token site by the ACK packet and the Ordering Queue is not

consistent up to the current time stamp, it transits into GP (Getting Packets) state to wait

for more packets to fill up the missing slots.

10

Verification Slmle_/and ProcessMod_

Chapter 3 Verification Strategy and Process Model

3.1 Introduction to protocol verification

A well-structur_ protocol design generally follows two common themes: simplicity and

modularity. Simplicity means that the protocol can be built from a small number of wen-

designed and well-understood pieces. Modularity means that a complex function can be

built from smaller piex_s that interact in a well-defined and simple fashion. Each smaller

piece is a light-weight protocol that can be separately developed, verified, implemented,

and maintained. Generally, a well-formed protocol should have the following

characteristics [HOLZ91]:

• not over-specified: it does not contain any unreachable or inexecutable code;

• not under-specified: it may not cause unspecified receptions during its execu-

tion;

• bounded: it can not overflow known system limits;

• self-stabilizing: ff a transient error arbitrarily changes the protocol state, a self-

stab'dizing protocol always retm'ns to a desirable state within a finite number of

transitions, and resume normal operations;

• self-adapting: it can adapt, for instance, the rate at which data are sent to the rate

at which the data links can transfer them, and to the rate at which the receiver can

consume them;

• robust: it must be prepared to deal appropriately with every feasible action and

with every possible sequence of actions under all possible conditions. The pmt(x_l

11

Verifc_ion S_r_egy andPro_ Model

should make only minimal assumptions about its environment to avoid dependen-

cies on particular features that could change;

• consistent: three consistency standards include: deadlock-free - no states in

which no further protocol execution is possible; livelock-free- infinite looping

without ever making effective progress; improper terminations - the completion

of a protocol execution without satisfying the proper termination condition.

Since RMP is a complicated protocol, the verification of the protocol design is important

to increase confidence in its reliability and safety during operation. To verify that RMP

specifications have all of the above characteristics is difficult and may even be impossible.

The design of RMP includes many features that directly relate to the above requirements.

Many of these features are borrowed from the experience in implementing TCP. For

example, the recovery mode is designed to satisfy the requirement of self-stabilizing

protocol. RMP time-out and retransmission mechanism applies self-adapting techniques.

Since our concentration is on the RMP operation specifications, the main emphasis of our

verification is on the completeness and consistency of RMP specifications, i.e. proving that

the protocol is well-specified and consistent.

3.2 Verification Methods and Our Early Experience

The current practice of protocol verification can be dividend into two types: mathematical

proofs and model checkers. The mathematical proof approach involves specifying the

protocol assumptions as axioms and proving the protocol properties as a sequence of

lemmas and theorems. It may be a pure mathematical proof or the proof based on the use

of some thexaem provers. Another approach is based on the use of model checkers. In this

12

Veific_i_ Stre_ and Pmc_u Model

case, protocol operations are specifiedin the model checker's formal specification

languages and used as a input to the verification systems. Verifiers then perform an

exhaustive search over all possible state spaces according to the specified protocol

operations. The protocol properties are verified against all possible states and paths.

Currently there are several publicly available theorem provers and model checkers. The

advantages of mathematical proof approaches include its rigorous, precise derivation of

protocol properties, and independence of lower-level implementation. The main

disadvantages of mathematical approaches includes the high-level abstraction that is

separated from the implementation. The lack of traceability between the theorems and

implementation makes it very difficult to find direct correspondence between them. Far the

model checkers, it is more straight forward to translate the protocol operations into the

system-specific specification language and the proven properties can be directly related the

design specification and implementation.

In our first attempt to formally verify the RMP, we used the SMV model checker

[BURC90]. Some initial attempts reveal some limits on this model checker, including the

state explosion problem and the lack of high level data-structure support. We then decided

to use the PVS [RUSH93]. There is a rigorous mathematical proof of the Token Ring

Protocol [CHAN84], on which RMP is loosely based. We then switched our concentration

on the theorem prover approach and tried to replicate the theorem proof by PVS. Because

PVS is a mechanizeA system, most proof steps must be input by the interactive usex. We

didn't pursue along this approach too far, since it is not tractable to implementation. It is

until we found other two model checkers, i.e. Murphi and SPIN, we made some solid

progress in constructing the formal models of RMP. Through this early trial-and-error

approach, we learned that it is very important to construct the formal models at an

appropriate abstract level compatible to the underlying tool's specification language. In the

13

Verifica_kmStrategyand ProcessModel

following sections, we describe the pin.hies of these tools and our experience with them.

We feel that these experiences are very important for directing us to our current success.

Finally we outline our verification strategy and the development process model based on

these available tools.

3.3 Theorem Prover

The mathematical proof approach for formal protocolverificationinvolves specifyingthe

protocol assumptions as axioms and proving the protocol properties as a sequence of

lemmas and _ms. It may be a pure mathematical proof such as the verification of the

Token Ring Protocol [YODA92] or the proof based on the use of some theorem provers

[DREX92]. A typical and popular theorem prover system we have come across and used

in our project is PVS -- Prototype Verification System from Computer Science Lalxratory,

SRI International, Stanford University. It is a prototype for a system specification and

verification based on higher-order logic. It consists of a specification language integrated

with support tools and a theorem prover. PVS tries to provide the mechanization needed to

apply formal methods both rigorously and productively. The primary purpose of PVS is to

provide formal support for conceptualizing and debugging in the early stages of the life-

styles of the design of a hardware or software system, when the executable version of the

system is still not available. PVS has the following features [RUSH93]:

• Early Stage Verification: It is intended to be useful for early life-style applica-

tion of formal methods, instead of program verification of a program in some con-

crete programming language satisfied the specification. It is designed to help in

detection of design errors as well as in the confirmation of"conectness';

• Rich Type System: Compared with some similar systems, it has very rich type-

system and correspondingly rigorous typechecking. A great deal of specification

can be embedded in PVS types, and typechecking can generate proof obligations

that amount to a very strong consistency check on some aspects of the specifica-

14

Ver_ica_onS_mte_/and Processk_del

tion. It combines a rich expressive specification language and an effective theorem

prover,

• Interactive Proof and Automation: PVS provides a good combination of direct

control by the user for the higher levels of proof development, and the powerful

automation for the lower proofs. It proves the theorem through the process of chal-

lenging specitications. At the high level proof, user can easily input the prove com-

mands, while most lower proofs can be carried out by the powerful theorem

prover,

• Good Conservative Extension: It helps eliminate certain kinds of erro_ by pro-

viding very rich mechanism for conservative extension. PVS provides both the

freedom of axiomatic specification, and the safety of a generous collection of deft-

nitional and conswucfive forms, so that users may choose the style of specification

most appropriate to their problems.

PVS has been used to verify several systems, including fault-tolerating protocol, airline-

reservation system, selected aspects of the control software for NASA's space shuttle

project. It runs on workstation with mediate system resources requirement of disk space

and memory space(30 MB hard disk + 20MB swapping space, > 12 MB memory). PVS is

implemented in Common Lisp. All versions of PVS require Gnu Emacs as its user

interface. Latex and appropriate viewer are needed to support certain optional feature of

PVS, such as the pretty typing of the proof.

RMP is based on Chang's Token Ring Protocol and there is a mathematical proof on the

protocol based on the use of the modal primitive recursive functions [YODA92]. Our first

effort was to replicate the proof by using Paves since, time operators and sequence and

behavior types [RUSH93]. These cons_ types can be used directly to specify RMP

properties. We made some progress in replicating the proof, yet we didn't pursue our

15

VerificeionSlreeoy and ProcessModel

verification of the protocol design using PVS. F',_zst,the learning curve of PVS is very steep

and PVS proof are still mostly mechanic. Even the proof of some simple theonmas can be

quite involved and requires a lot user interactive input. Secondly, we feel that even if we

can formally prove some theorems with the protocol, it is difficult to relate the theorems

with the actual implementation. Since mathematical theorems proved by PVS are generally

at the very high abstract level and there is still significant gap between the implementation

and the theorems. As our primary goal was to integrate formal methods into the software

development proeess and to increase the quality and reliability of the software, we chose to

pursue our verification based on analysis by model checkers whose state-based analysis can

more easily be compare with tests executed on the implementation. A recent report shows

a new implementation of theorem prover which has integrated the model checkers into the

prover system to allow more powerful automatic proof through model checker [RAJA95].

This new system may help to relieve heavy user interaction and lead to shorter proofs.

3.4 Model Checkers

Model checkers use a high-level formal specification as language input and generate code

to perform an exhaustive search over all possible states in order to verify properties of the

specified system. In an effort to facilitat_ the automatic verification of high-level design for

hardware and software systems, several tools have been developed and used in many

applications. We used three tools in the process of verifying RMP: SMV-Symbolic Model

Verifier from Carnegie-Mellon University [BURCg0]; MURPHI from Stanford University

[MELT93] and SPIN from AT&T Bell Laboratories [HOLZgl, HOLZ94]. These tools

have their own features and users can choose appropriate tool to perform different

verification tasks at different levels. In the following subsections, we describe these three

tools and our experience with them.

16

VorificmionStrmegyand Procassk4ocl_

3.4.1 SMV

SMV is a tool for checking finite state systems, from completely synchronous to

completely asynchronous, against the system specification expressed in the temporal logic

CTL [BURC-X)O]. It allows for specifications of non-determinism and concurrency in its

model SMV attempts to directly model system behavior by specifying state transitions

explicitly for each state variable, expressed as procedures of variable assignments. SMV

has been effectively used in some hardware design verification. It supports rich temporal

logic specifications and an incremental, modular approach to protocol specification and

verification.

We have constructed several simple formal RMP models using SMV. Since our first

attempt involved too much protocol implementation details, we faced severe difficulties in

extending the simple models to include the full protocol specifications. In addition, when

the model is incrementally built, we quickly ram into the problem of state explosion. There

is simply no enough memory to perform exhaustive state space search and extending the

running time does not help. One execution of a SMV mode of RMP was aborted after about

ten days.

3.4.2 Murphi

The Murphi Verification System consists of the Murphi compiler and the Murphi

description language. The Murphi Compiler generates a special purpose verifier in C++

from a Murphi description. After further compiling by C++ compiler, the special p_

verifier can be used to check the properties of the system, such as error assertion, invariant

and deadlock. The Murphi description language is a high-level description language for

finite-state asynchronous concurrent systems. It supports user-defined data types,

procedures, and parameterization of descriptions. A complete Murphi description consists

of declaration of constants, types, global variables, and procedures; a collection of

17

Vodf'catio¢_Strategyand ProcossMod_

transition rules; a description of the initial states; and a set of invatiants.

In Murphi, a state is an assignment of values to all of the global variables of the description.

The verifier starts execution in the specified start state. It then applies all executable rules

to this state to generate new states. All visited states and unexplored new states are stored

in two state queues. Whenever a next state is generated by applying a rule to a unexplored

state, it is compared with all visited state.s to see if it a new stare. The execution stops if an

error occurs or if all executable rule.s have been applied to all states and no new state can

be generated.

Because Murphi choose the next executablerulearbitrarilyfrom allapplicablerules, the

Murphi descriptionsare non-deterministic.So the correctMurphi program must do the

rightthingno matterwhich rulesare chosen. This execution model isgood for describing

asynchronous systems where differentprocessesrun atarbitrarySlxcd which interactvia

sharedvariables.Message passingcan be modelled by readingfrom and writingto a buffer

variableor array.

The Murphi verification system can be run in two different modes: simulator mode or

verifier mode. In the simulator mode, the simulator chooses among the rules arbitrarily to

getthe nextstate.Itwillrun foreveror untilan erroroccurs.On theotherhand, the verifier

considerstheresultsforALL possiblechoice eitherby breadth-firstsearchor depth-first

searchprocedures.Itstoresallstatesin a largehash tablesso thatitcan cut off the search

whenever itencountersa stateithas seen before.Explicit"asserf'and "error'"statements

in the Murphi model descriptioncan be checked in each step.Ifone of these conditions

occurs,the verifierhaltsand printa diagnosticconsistingof a rcco_ sequence of

statesthatleads from the initialstateto the error state.All invariantsexpressions arc

checked along allexplored paths. Initially,Murphi was designed for hardware design

18

Verific_ion_aW and Pmceu klod_

verification. It has been successfully used to verify some hardware design as well u some

protocol design, including the design of large cache-coherence protocol (DASH)

[LENO02].

Our first trial on Murphi has the same problem as we had on SMV. The reason is that we

tried to construct a model which involves too much detailed on the protocol operafionL

When we tried to extend out simple model, we faced the same state explosion problem.

Only after we decided to construct our model at a much higher level did we start to get some

real progress in the Murphi model. Our later experience shows that Murphi is a good

verification tool at this level, because it offers the following characteristics:

• Asynchronous State-Machine: Murphi is designed for the verification of asyn-

chronous state-machine;

• One-to-One Rule Translation: Our protocol specifications can be easily wansfer

into Murphi rule specification, which help us to keep high fidelity between our

models and the protocol specifications;

• Invariant and Assertion: Murphi verification system has rich supports for tem-

poral logic invariant specification and insertions of assertion in the specification. It

also support fairness properties specification along the exploration path.

These characteristics are very helpful to our protocol verification. Therefore, we have

performed most of our verification analysis based on our Murphi models of RMP.

3.4.3 SPIN tool

SPIN is a tool for analyzing the logical cons_ and general verification for proving

correctness properties of distributed or concurrent systems, especially for data

communication protocols. The system is described in a modeling language called

PROMELA. The language allows for the dynamic creation of concurrent processes.

19

VsrificationStripy and Procms Model

Communication via message channels can be defined to be synchronous (i.e. rendez-vons),

or asynchronous (i.e. buffered). The protocol system is described as a group of processes

running at their own rate, exchanging message through communication channels. Each

process can make state transition based on the state variable values and the channel event

and produce output to other processes' communication channels.

Given a model system specified in PROMELA, SPIN can either perform random

simulations of the systems's execution or it can generate a C program that performs a fast

exhaustive validation of the system state space. During simulations and validations, SPIN

checks for the absence of deadlocks, unshod receptions, and incxccutable code. The

validatorcan alsobe used m verifythe correctnessof system invariantsspecifiedas never

clauses, and it can find non-progress execution cycles.

Compared with the Murphi tool, SPIN has several additional advantages. In-st, SPIN is

especially designed for verification of data communication protocols, and it currently has

over 1000 active users in both academic and industrial world. Secondly, it has the explicit

support for the communication channels between processes, which is good for instantiating

the detailed communication mechanism between RMP processes. Thirdly, SPIN has

adopted some advanced algorithmsto addressthe stateexplosion problem. Users can use

either state reduction algorithm or bit-state reduction to perform best possible search in the

case of state explosion. After we successfully cons_ucted an abstract formal model using

Murphi, we switched m SPIN toincludethedetailedcommunication mechanisms among

differentprocessesand verifytheprotocolatlower levelof detailsthantheMurphi modeL

2O

VenT'_on Strategy_ Proce_ Model

3.5 Our Verification Strategy and Process Model

From the above review, we can conclude that theorem provers usually work on a higher

level of abstraction than the model checkers. From PVS, Murphi, to SPIN, they can

simulate protocol operation details in a increased order. In our RMP development project,

our main goal is to increase the quality and reliability of the RMP implementation. As there

is already rigorous mathematical proof of the basic token ring algorithm, it is more

appropriate for us to use model checkers to verify the completeness and consistency of the

protocol specifications. At this point, it is very critical to choose appropriate level of

abstraction to be simulated by the model checkers. Our early trials on these tools gave us

valuable experience in choosing a suitable abstraction level. Our initial attempts on all of

these tools involved too much operation details, perhaps influenced by the RMP

implementation. Only after we determined to use a higher-level abstraction to specify and

simulate the RMP operations, we started to make some real progress in constructing formal

models. While SMV does not support complex data structure, our first model involved

some lower level simulation of the protocol operations, which make it hard to build a

complete model. After that, we decided to use the Murphi tool to build a more abstract

formal model of RMP. At this level, we do not concern about the details of the underlying

data structures. Instead we used non-deterministic algorithms to allow for all possible

transitions. In this way, we built our first Murphi model of RMP. Based on the success of

the first model, we further construct more elaborated interaction model involving lower

level data structures using SPIN's communication channels.

In summary, based on the above existing tools, the event-driven d_gn of RMP protocol

and the mode table specification of RMP, we will perform the verification and validation

in the following two steps:

• Single Site Murphi Model: we use the Murphi tool to construct a single site

21

Veilice_ Stmlogy and Precis 14o(I_

model directly based on the RMP _ons. Each rule in this model will

directly come from the specifications. In this relative high-level model, we are not

concerned about how those events are genesated and how this site's transition is

going to affect other sites. We ate only concerned about the completeness and con-

sistency of the RMP spedficatim of a single site's response m arbitrary events

under an possible states. Basically, we ignore the action part of the specification

but only the transition part. We are only examining a site's behavior under the arbi-

trary sequence of events as specified;

• Multiple Site SPIN Model: we use the SPIN tool to constn_ a multiple-site

interaction model, which will actually model interaction and event generation in

the RMP processes. The explicit commtmication channel feature in SPIN will be

used to simulate the Data Queue, Event Queue and the Ordering Queue in RMP.

Therefore this is a much low level model than in the Murphi model. The state

explosion problem arising fxom the complex interaction between RMP processes

will be handled by the bit-state reduction algorithm.

Since RMP operates in two distinguished modes, ie. the normal operation mode and the

recovery mode, it is appropriate for us to verify two modes separately. In this way, the

essential features of RMP are preserved while the possible state explosion problem is

avoided. This approach significantly reduces the state space as compared to the combined

model, while still maintaining the fidelity. To increase the fidelity between the

implementation and the specifications, these formal models developed are used to generate

a test suite for implementation's conformance testing. So the correct verified protocol

behaviors are tested on the implementation along an possible paths. Consequently the

formal models are fully integrated into the de_ent life'style.

In the entire process of the protocol verificatkm and testing, we followed a iterative and

interactive model of development (Fig. 2). Upon the first outline of RMP specification, we

22

Verific:a_onStrategyand Ptoc:usModel

start building the formal models using different tools. These models are constructed in a

incremental fashion, i.e. from the simplest normal operation model without dam loss, to a

fully operational modeL Any changes in the design and specification will result in the

modification of the formal models. The formal models provide good testbed for alternative

designs. Any errors detected in the formal models ate fedback to the protocol designers and

the implementation. After the specification and implementation make corresponding

changes, the test cases generated by the formal models are used to test against the

implementation for the protocol conformance. Through these mutual interacdon among the

specifications, the formal models, and the implementation, the high fidelity between the

specification and the implementation can be achieved and the reliability of the software

increases. We feel that this development model incorporate the formal models into the

whole development process and help to improve the software process.

Formal

Formal Models

Specification

Test Generation

Conformance Testing

r

Implementation

Figure 2. Our Software Development _ Model

23

FormalMod_ of PAaP

Chapter 4 Formal Models of RMP

4.1 The Single-Site Murphi Model

As stated in the previous chapter, we first build a single-site model using the Murphi tooL

This singlesitemodel simulatesa singleRMP site'sbehavior under an arbitrarysequence

ofevents.To constructthe model, we simplifyand then extracttheminimal statevariables

from the specifications. Secondly, state transition rules can be built using the transitions in

the RMP specifications. Finatly, we use Murphi tool to perform various verification and

analysis on this formal model, such as deadlock analysis, state assertions and system

invariants.

4.1.1 Some Slmpllficatlons

RMP

Process

Network

Event Generator

Events [

Figure 3. Murphi Model of RMP

For the single site model we do not consider the details of the underlying dam structures

of RMP and any interaction between RMP processes. We simply assume that there is a

network event generator which generates all possible RMP events in an arbitrary sequence

24

Fomml _ ol P,gP

(Fig. 3). The model simulates the behavior of a RMP site under this event sequence. This

assumption greatly simplifies our model while still provides valuable information on the

completeness and consistency of the transitions in the RMP specifications.

Let us see some of the consequence of this simplifications. First, because we ignore the

interaction between RMP processes and all events are generated by a network event

generator, we need not consider those actions specified in the RMP _ecificatiom. Those

actions only affect other sites, such as the actions of muldcast or unicast packets to other

sites. Second, since there is no concept of data sequence number, timestamp, Data Queue

or Ordering Queue, all necessary conditions in the specifications are simulated by

numeratcd variables and governed by non-deterministic transitions and fairness rules. For

example, theimplementation of an Ordering Queue includesa sequence of slotsorderedby

timestamps. In this simplified model, we do not simulate this data structure directly.

Instead,as the ordering queue can only be in CONSISTENT stateor INCONSISTENT

state, we simply use a scalar variable with two possible values to represent the state of

Ordering Queue. Here a CONSISTENT state means that the site has all slots filled up in its

Ordering Queue up to the last time stamp of the last ACK or NL packet. Since we do not

have theconceptof timestamp atthislevelof abstractioninthemodel, we can not include

detailed fields within data packets and Ordering Queue. Rather, upon receipt of specified

event, this site's state variable is set non-determinisficaUy to either CONSISTENT state or

INCONSISTENT state. In this way, the model is guaranteed to simulate all possible

behavic_'s of the single site under arbitrary events. Third, the system response to certain

events have the same effect on state variables, as we do not consider the underlying

implementation details. For simplicity, we will simply ignore those events and replace

them with the similar events that have the same effect on the state variables. For example,

the model will react in the same manner to member data packets and non-member data

packets. The model keeps the data event and ignore the non-member data event.

25

FormalModelsof RMP

4.1.2 Minimal State Variables

To represent an RMP state, we have to decide which minimal set of variables can

sufficiendy and accurately represent a site's state behavior. Because we do not explicitly

simulate the Data Queue and Ordering Queue, we use some numerated variables to

simulate all state variables. We also have to keep the state variables at minimum to avoid

possible stale explosion problem. Upon examining the RMP specifications, we found that

the following variables are necessary to honestly represent the s13ecificadons:

a. STATE: a variable that represents the operation mode of the RMP site, which

could only be {N'I_ (Not Token Site), TS (Token Site), PT (Passing Tokensile),

GP (Getting Packets), NIR (Not In Ring), JR (Joining Ring), LR (Leaving Ring),

SR (Start Recovery), CNL (Create New List), SV (Sent Vote), ANL (Acked New

List), AR (Abort Recovery)};

b. OQ: a scalar variable to represent the state of the site's Ordering Queue, which

can only be {CSI (Consistent), INCSI (Inconsistent)};

c. TKSTATE: a variable to indicate the token-pass status of a single site. For a

named next token site or the current token site, the site will perform different tran-

sitions based on the token-pass status, i.e., if the token is successfully passed, it

wiU transit to PT, or else stay in the TS. This variable can only assume two possi-

ble values: {TKP (ToKen Passed), TKUP (ToKen UnPassed)};

d. EXIT and TIME: these two variables are used for membership change opera-

fions only. EXIT variable is used to check if the required exit condition is

before the site can actnally leave the token ring. The EXIT variable can only

assume the values of {YES, NO}. The TIME variable is used to represent the rela-

live value of timestamps of different packets, which can only be {GT (Greater

Than),LE (Less or F.quaJ)}.

26

Forn_ Mcx_ls of RMP

Besides these state variables, we also need a way to get additional information from the

data packets. For example, if a site receives an ACK packet, it will react diffe_entiy based

on whether the site is named as the next token _/te or not. Because we do not simulate the

fields within data packets, we need to include this additional information in our modeL For

the normal operation model, we define a _ with two fields in every data packets: one

field called PACKET_TYPE to hold the information about the type of the packet; another

field called PACKET_STATE to hold additional information on packets, such as whether

named this site as the next token site or not. The first field can be any of 13 RMP event

types, and the second field can be {NTS (Named TokenSite), NNTS (Not Named

TokenSite)}.

4.1.3 State Transition Rules and Actions

Even though this single site model is a high-level abstract model, we want to keep high-

fidelity with the specifications as close as possible. Based on the above simplifications, we

achieve this high-fidelity by directly translating each specified transition in the

specifications into a Murphi rule in the model. Each transition in the specifications is

translated into a Murphi transition. In the RMP specifications, however, ff the response to

an event is not specified, by default, it is supposed to be ignored by the site. In Murphi, we

have to explicitly specify this ignorance rule. Otherwise, a deadlock state may occur (see

next section).

For the specified actions associated with each transition, we first cross out those actions that

only affect other sites, such as multicast or unicast of ceratin packets. And then we examine

those actions which will actually change a site's state variables. These actions include: (a)

utxlating Ordering Queue; Co) passing the token. We create two procedures and use the non-

determinisdc algorithm to simulate the possible change of the state variables:

(a) UgxiateOrde_gQueue - whenever a site receives an ACK or NL packet, it puts

2"/

I

Formal Mod_ o_RMP

the packet in the Ordering Queue and UlXlate Ordering Queue. This action may non-

determini.stically change the value of OQ variable;

(b) PassToke.n -- whenever a site is in token site (TS) or named as the next token site,

upon receiving a data packet, it will try to pass the token by calling the procedure

PassToketh which may change the value of state variable TKSTATE. Depending on

whether the token is successfuUy passed, the site will take different transitions.

As stated in the RMP specifications, all actions specified are taken before the transition. To

make our model follow this specification, we associate above actions with the event

generator. All actions are taken immcdiamly after the corresponding event is generated.

Then transition rule based on the current state variables are taken. In this way, our model

works in the exact same way as specified. Besides the state transition rules, we also need

rules for event generation. Our first model was restricted to certain sequence of events.

Later analysis shows that this restriction unnecessarily complicates the event generator and

may result in deadlock. Consequently, we remove this constraint and generate all events in

random order.

4.1.4 Deadlock Avoidance

Following the above simplifications and abstraction, it is now straightforward to translate

the RMP specifications into the corresponding Murphi modeL But when we first run the

code generated by the Murphi compiler, it always ran into the deadlock state -- a state

where the system does not know what to do next except staying in the same state. Further

analysis shows that this does not means that there is a deadlock state in the specifications.

Rather, most of time we found that the model does not honestly represent the specified

behavior. The analysis on these deadlock states involves a lot of adjustment and fine-tuning

of the modeL It is also the first step that we get some feedbacks from the model and start

28

f-o_ god_ o_PJdP

the iterativc interaction with the protocol designers and implementators. We took the

followingapproaches toremove pessimisticdeadlock statesor perform some analysison

the potential problems in the design:

(a) Event Sequence: Initially, the network event generator produces events according to

some specified sequence. The idea behind that is to simulate the most likely sequences of

events first. As a result of this specified event sequence, the system may easily lead into a

state where the next possible events are not defined, thus in a deadlock state. Later the

model is nmdificd to allow arbitrary sequences of events to be generated, Le. the event after

an ACK event could be any event. While it is good to simulate the most likely sequence of

events hrst and check a site's response under the normal sequence of events, we feel that it

is the value and the advantage of the formal methods to verify that the specified system has

dezdlock-f:_c state under arbitrary event scqueaw.c. By including all possible sequences of

all events, wc arc able to show the completeness of the specifications;

Co) Alternative Operation Between Two Modes: Originally, the model operates in a

completely non-deterministic way. The model simply picks any executable rules and

transits into next new state. In this way, the system may generate several events without

allowing any site response. This is one possible way to simulate the packet loss over the

network, but it also easilyleads into a deadlock state. Since at this abstract level there is

no explicit way to simulate the NACK mechanism in case of data packet loss and we do

simulate the event queue (No event buffering), all data loss are simulated by getting the

corresponding data packets later by the site and bringing the site into CONSISTENT

Ordering Queue state. Therefore we modify the model to operate alternatively in two

modes: event generation mode and site xespoose mode. In event generation mode, a new

event is randomly generated. Since all actions spccificd arc taken before actually transiting

to next state, the corresponding actions are also taken as the next event is generated. In the

29

Formal Models of RMP

site reSlXmse mode, the RMP site responds to the event based on the current values of the

state variables. In this way, the model works altcmadvely in the event generation mode and

the site response mode;

(c) Event Ignorance Rules: In the RMP specification, all events not specified are

supposed to be ignored by the site. But in the Murphi model, the site response to ALL

events must be explicitly specified, even for those events which are supposed to be silently

ignored. The corresponding "ignore" rule must also be expficidy added into the model to

avoid unknown response deadlock;

(d) Fairness Properties: After all above precautions have been taken, the system may still

get into deadlock state. The key of this problem lies in the fairness properties in the model.

In the actual operation of the protocol, the site will stay most of its time in the normal

operation mode, where the packet loss seldom happens and all lost packets will soon be

retransmitted by the NACK mechanism. But in the verification system, the system

performs an exhaustive search. If there is any possible path which will lead m deadlock or

inconsistent state, it will find it and stay there forever. For example, if a site loses a data

packet and gets into INCONSISTENT state by an ACK event, the lost packet is supposed

to be retransmitted by NACK mechanism. Without further specification, the site may stay

in the inconsistent state forever, eventually violating the system invariant and blocking the

token rotation. The way out is to use the fairness specification to further specify that certain

events should happen infinitely often. For example, the lost data packets will eventually be

reu-ansmitted and bringing the site back to CONSISTENT state again. Otherwise the site

would have to fail and nor further operation is possible. The fairness specifmations play a

important role in this single site model, since we do not have a way to explicitly simulate

the NACK mechanism and dmestamp.

During the evolutionary processing of formal methods, we gradually refined our model to

3o

Focnml I_dak o(RMP

a state that honestly represents the specified In'cm:x:ol behaviors and runs deadlock-free. We

feel that it is this part of model tuning process that helps us verify our protocol. Typically,

during the initial debugging and adjustment phase, the Murphi model is run under the

simulation mode so that any deadlock can be easily caught by the simulator and

corresponding change can be made easily. For instance, if the model runs into a deadlock

state and the analysis shows that the system is in a state where the event rcspousc is not

specified. By default, the event is supposed to bc ignored by the site. At this point, the

question goes back to the designers to see ff the site is indeed supposed to ignore the event.

In some cases, the specifications must be modified to achieve the desired behavior.

Sometimes, some adjustments are required to make the model correctly simulate the

specified behavior. Through this kerative feedback from the formal models, we promote a

common understanding of the protocol and increase our confidence on the design and

specifications of RMP.

4.1.5 Verification Analysis and State Invarlants

The Murphi verification system can check other properties beside the deadlocks. To make

sure that the system has certain properties in certain states, we can add explicit "assert" and

"error" statements within a rule. If an error condition occurs, the verifier halts and prints a

diagnostic consisting of a reconstructed seque.m_ of states that leads from the initial state

to the error state. A more general way is to add system invariants into the model so that

these invariants are checked against all explored paths. If the verifier finds that one of the

invariants is false, it will print the detailed path from the initial state to the violating state.

These invariants can be specified in a temporal logic statements. Generally, system

invariants are the best way to verify protocol prolg_es. But the difficulty is that most of

time these invariants are far from trivial To correctly specify a protocol invariant requires

a thorough understanding of the protocoL Here we give two examples of RMP invariants.

The first invariant is called "IS always CSI" - if a site is a token site, then its Ordering

31

Form_Modeil_ RMP

Queue must be always CONSISTENT. By the definition of the mien site, this property

must be true. If a site's Ordering Queue is INCONSISTENT, it should not become a token

site. Rather, it should first get into GP state and wait until the Ordering Queue becomes

CONSISTENT to transit into TS. After a site becomes token site, there should be no events

with higher timestamp which will put the site into INCONSISTENT state, because the only

packet which has time, stamp greater than the last limestamp is supposed to be generated by

the current token site. Another invariant is called "GP & INCSI always TKUP" - if a site

is in getting packet state and its Ordering Queue is INCONSISTENT, it must not have

passed its token. Only when its Ordering Queue is CONSISTENT, it is possible for the site

to pass token to the next site. These two invariants along with other invariants have been

specified in the model and are verified to be true in our modeL

After continuous manipulation of the model's fairness properties, we found that the

minimum fairness properties required to guarantee all system invariants to be true are: (a)

the token will eventually be passed by a named token site and; (b) a inconsistent Ordering

Queue will eventually become consistent through the NACK mechanism (not simulated by

the single site model). Under these fairness conditions, all system invariants hold. At this

moment, we feel satisfied with the model, since these fairness conditions are just the

minimum conditions in the common sense for the protocol to operate continuously without

getting into recovery state. Of course, more detailed and elaborate invariants will lead to

more detailed check on the system properties. It is worthwhile to mention that besides the

use for exhaustive search, the model can also be used to examine the system behavior under

a specific sequence of events to test an alternative design. We will talk about this later in

the conformance testing part.

The above discussion is restricted to the normal operation modeL The recovery model can

he consorted in a similar way. For state variables, we need another variable ALL to

32

Fom_ _ c_ RMP

represent vote and ack information for RecoveryVote or AckNewList. Besides, we also

need more fields to represent information in a data packet:

• INFO- if the packet information matches with the site's infimnation;

• LIST_ if the new fist is valid of invalid (according to the pre-specified fanlt-

resilient criteria);

• RFM -- ff the list is the reformation list or not.

Most of these variable are binary variables. In this way, a recovery model is constructed

and used to perform ve_on analysis. When fairness conditions are minimized, we

found that for most recovery states there is only one way to recover successfuL This strict

requhement is compensated by the RMP's flexible design to allow for the creation of a

single site's own group.

4.2 Multiple-Site SPIN Model

4.2.1 The Need for Multiple-Site Model

In the Murphi formal models, we examine the protocol behavior of a single site under

arbitrary sequence of events. At this level of protocol abstraction, there is no concept of

packet sequence number, fimestamp, Data Queue, Ordering Queue or HACK mechanism.

There is no explicit interaction between different members of the RMP processes and all

event-generating action parts are ignored. All events are generated by a network driver in

a non-deterministic manuez, not by the ring member as part of the site's response action. In

the models, all actions that only affect other sites states are ignored. The Murphi model is

good for checking the completeness and consis_ of the RMP specification related to

the stale transitions. The verification analysis on this level of abswaction shows that the

protocol does preserve the required properties under the arbitrary sequence of events,

assuming that certain fairness properties are satisfied. A complete verification of the

protocol specifications requires us to consider interactions among different sites and all

33

Focma/Modol* ot RMP

events should be generated as part of mcmbc_"s specified resIxmse action instead of being

generated by the external random event _.

Based on the above observations, we decided to take the advantage of SPIN tool's explicit

support of commurdcation channels [HOll91]. We develop a SPIN formal model of RMP

which incorporates the interactions between token ring members and elaborate the

communication mechanisms between different sites. As we need to simulate the action

parts of sending out data packets, ACK and NACK packets, we have to include the concept

of sequence number, dmestamp, Data Queue and Ordering Queue. Therefore, the SPIN

model must have lower level simulation of the protocol operations and include some basic

underlying data structures. For example, in the Murphi models, we simply use a non-

deterministic algorithm to simulate the transition of a site's Ordering Queue between

CONSISTENT and INCONSISTENT state. In the SPIN models, whether a site's Ordering

Queue is consistent or not will be determined completely by examining the slots of the data

structme in the site's Ordering Queue. Since we have to maintain some data structures to

represent a site's state, this detailed model permits a closer comparison between the formal

models and the implementation.

4.2.2 Some Simplifications

Since RMP is a complicated protocol, it is neither necessary nor possible to use the SPIN

tool to simulate all detailed behaviors in the protocol implementation. We have to make

some simplifications for our model to abstract the main features of the protocol without

getting into too overwhelm in details. In our model, we explicitly make the following

simplifications:

• Fixed single data source: In the RMP specification, data packets can be sent to

the token ring by any ring membe_ or by other non-member sources. Allowing

multiple data source will not introduce any operational complexity but simply

34

FormalModab o_RMP

make the book-keeping task more complex and difficult;

* One ACK per data packet: For efficiency reaum, the current RMP specification

and implementation support one ACK for multiple data packets, which is an exten-

sion of Chang's original token ring protocol [CHANS1]. But this expansion is

strictly for the efficiency reasons and does not involve any fundamental change to

the _1 operation. So inour model, we willkeep theoriginalone ack per data

packet poficy. Since our data source continuously send out data packets, there will

not be any NULL ACK packetsinthe normal Ol_On model;

• Small periodic sequence number/timestamp: In the RMP stccificadon_ the

data sequence number is source specific and could be any number determined by

tim source. These sequence numbers arc used to determine the relative order for

the data packets sent out by the same source. The timesmmp is used to order all

data packets from different sources and forms the base of virtual synchrony. The

dm_p is monotonically increased by each ACK ca"NL packets until (2^32 - 1).

It is then round back to zero and increases again. If we allow the dmestamp to

change in a large range, the mutual interaction between different sites will cause a

state explosion. Since we have to keep our data _s simple and the number

of state variables small, it is essential to have a good algorithm to represent the

timestamp and the sequence number. From the above simplifications, we can use

the same number for the data sequence number and the dmestamp, since thee is

only one data source and no NULL ACK packet. The critical step is that we use a

small periodic sequenceJdmesmmp that ranges from 0 to (2*N-l) to simulate the

finite states in the Ordering Queue. Here we have to used the following factto

update and periodically clear each site's Ordering Queue: whenever the token is

rotated back to a site, the site can discard all data packets prior to the last times-

tamp sent out by this site and clear those slots for later use;

• Three site interaction model: More members in the ring will increase complex-

35

Ill

Focmai Modeb ¢dRMP

ity of the protocol operations, but three members will represent almost all possible

combinations of events and states possible in the interaction. To keep our model

simple, we retain to three site interacdon model. Actually, there is no intrinsic dif-

ficulty in instandating more RMP processes in SPIN, since processes can be cre-

ated dynamically. But more prtges.w_ will require longer Ordering Queue and

more complex book-keeping,

• Strict flow control: In the protocol design, flow control is a very complicated

and important issue, especially when NACK policy is implemented. A good flow

control algorithm should allow for the fastest data transmission without unneces-

sary duplicate data retransmission. To avoid unnecessary complication in our for-

mal model, we use a strict flow control mechanism that the data source will not

send the next data packet until it receives the acknowledgment for the last sent

packeL To construct a formal model with the realistic time-outYretransmission

algorithm involves much more nontrivial work.

Based on the above simplification, the formal RMP SPIN models axe built in an

incremental fashion. First, a model with no data packet loss is constructed, where the data

source initially sends out a data packet and each site reacts as specified in the protocol

specification. This model mainly consist two basic processes: a muldcaster process that

plays the role of network mulficasting network and a RMP process that generate events and

responds to the events on its own event queue. The data source will not send the next packet

until it receives the acknowledgment for the last packeL All mulficast packets (DATA,

ACK) axe muldcast to all members through a multicaster process. Unicast packet are scat

directly to the destination data queues. We use arrays of size (2*N) to record the data

packets and ordering queue slots. Different from the RMP implementation, all data packets

will stay in the data queue and will never be actually placed in the ordering queue, since we

have the same sequenceJfimestamp. Each process loops infinitely on its event queue: get

36

Fofnmi _ ot 8MP

next event from the event queue, take actions and transit as specified in the specifications.

Whenever there is a system-wide time-out, it is assumed that the last packets are lost by all

members and will be retransmitted. After this first model is constng'¢_ a more detailed

model with data lose and NACK and retransmission mechanism is constructed.

4.2.3 Results

Even from the simplest version of SPIN model of RMP, we can learn something beyond

our first intuition. Since all packets in the first model are transmitted reliably, we naively

assumed that each site would always have their Ordering Queue in the OONSISTENT sta_

and will never get into INCONSISTENT stag. Consequently, all sites would never get into

GP state - a state that was named as the next token site, but its Ordering Queue was in

inconsistent state such that it can not accept the token immediately. But the first run of the

model shows that even in this reliable defivery case, it is still possible to get into GP state

temporarily. Due to the response speed differences among different sites, the data packets

may be delivered out of order. In the case where the ACK packet is delivered ahead of the

corresponding data packet, the site may be temporarily in the GP state. This is the

advantage of the automatic verification tool: even for a simple model it can exhibit you

some non-trivial behaviors.

The next level of the model involves the simulation of network behavio¢. Since RMP is

built on top of UDP, packets may be lost, duplicated, or delivered out of order. For the

current RMP specifications, the duplicated packets should not cause any specific problems.

The mis-ordengldelivery of data packets is simulated automatically by the SPIN system by

considering all possible different rates among different processes. So the main task is how

to simulate data loss and the re_ mechanism. While it is easy to simulam data

loss, the model may easily get into deadlock state without careful consideration. If the

packet is missed by all members in the ring, the data source will be waiting for

37

Forma/Mod_o(

acknowledgmentfor the dam packet while the current token site, which is responsible for

generating the acknowledgment packet for the lost data packet, is waiting for the data

packet.to arrive. In the implementation, this problem is solved by setting a alarm for the

token site to pass the token within certain time limit. Witt_n this limit, if no dam l_tcke_

arrives, the token site will pass the token by a NULL ACK packck In our _ we use thc

global time-out feature in SPIN to retransmit the lost peckec whenever thee is a system-

wide time-out and the system is in s deadlock state, the last (lost) packet is re-multicasted

to all members in the ring.

As inthe Murphi model, we firstrun the model ina simulationmode. The simulationruns

can be usefulinquicklydebugging new designs,butthe simulationdoes not prove thatthe

system iserrorfree.In the simulationmode, ifthereis any errorchecked by the assert

statementor system deadlock, one can easilydebug the code. All visitedstatesare not

stored,but interpretand execute statementson thefly.GcncraUy, we use thismode under

two cascs.In thefirstcase,iftheSPIN model isnewly constructed,thesimulationhelpsus

quickly debug the modeL In the second case,the model is too complicated to take an

exhaustivesearchon allpossiblestates,a long timesimulationmay help to gain coverage

in wade of time.

After the formal model is established in a bug-free state, a verification code is generated to

perform an exhaustive validation. The first type of validation the SPIN model can perform

is the teachability analysis. This includes checking the state properties and system

invariants, such as the assertion violation, and detecting the error assertions. All of these

tasks can be easily done by examining all possible states. The second type of analysis is the

detection of deadlock. To distinguish the normal termination from the deadlock, the

acceptable end states are marked by end labels. The third type of analysis is bad cycles

detection, including non-progress cycles and livelocks. Some systems may not have

38

Fonn_ _ c_AMP

deadlock state, but they may loop infinitely without making "real progress". Here "_u

progress" means passing some states with desired properties. You can place progress labels

in the SPIN model to indicate some desired progress states. For example, in the RMP

normal operation, we want the token to be rotated around all members and all sites will be

in token site state (TS) infinitely often. We can mark the statement with its state in "IS as

the progress state. If the token can be implicitly passed without explicitly transiting into TS

state, the situation will be more complicated. Similarly, to formalize the opposite of the

non-progress cycles that something bad can not happen infinitely often, one uses the accept

labels. The last type of validation analysis is through temporal logic claims. In PROMELA,

all temporal claims are expressed as never clauses, e.g. in a way that something as specified

should never happen in the protocol It is relatively hard to express some complicated

temporal claims in never clauses, but the new release of SPIN has an additional option to

translate the linear temporal logic specifications into never clauses.

If an error is found, you can run the verifier again with -t flag to follow the full error uaiL

SPIN has several command options to change the default settings of the state space search,

including maximum search depth, and hash table entries. An important feature of SPIN is

that it provides feasible analysis in case of state explosion. A order analysis shows that most

computers with16-32 MB memory will run out of space for a system about 10_5 states

[HO1-7.91]. For models with multiple process interaction, this limit can easily be reached.

In this case, an exhaustive search is impossible. Besides random simulation, SPIN often a

bit-state supertrace algorithm to perform best possible partial-search. Some analysis shows

that this algorithm is by far the best in the case of impossible exhaustive search.

4.2.4 Future Directions

We have successful constructed a SPIN model for normal RMP operations and carried out

various validation analysis on the model We did not find any major problems, but the

39

Fom_ Models o_RMP

model does l_lp us to _ the complication of d_ protocol. For the ILMP recovery

opm'afion, wc still fac_ some difficulty in cW_iendy simulated various alarms and fime-ou_

mechanisms. In RMP, alarms play an imlx_ant role in reu_nsmission. We have to find •

way to simulaw these alarms and ren-ansmission algorithms effectively before we can

further improve our models. We believe that SPIN has enough power to perform a good

validation analysis on RMP.

40

I

Test OasesGeneration

Chapter 5 Test Cases Generation

5.1 Conformance Testing and Testing Strategy

The development of RMP follows our iterative model: a full interaction between

development team and the verification team. Upon the first design finished, the

development team moved forward to implement the protocol design in C++ and the

verification team starts working on the formal models based on the specifications. Any

potential problems found in the verification process are fedback to the design and

development team and may result in the modification of the specifications and the

implementation. Upon the completion of the first RMP implementation, the conformance

testing of the implementation becomes the main task for the verification team. A white-box

testing would be good if there is enough resomees and time. Considering the large size of

our implementation (> 2,2000 lines of code) and the group size of our team (2 for design

and implementation, 2 for testing and verification), we resort to the code review and black-

box testing. Code review is good to find some apparent and developer's habitual coding

errors, and black-box testing will serve the conformance testing. Since black-box testing is

based on the testing of all roq.bed functions, it is also known as functional testing.

Since the high fidelity between the specifications, the formal models, and the

implementation is our goal, we will perform the minimal functional-testing for the

implementation as our first step. All operational transitions specified in the specificatiom

are under testing to make sure that the imple_nentation has the desired behavior. Since RMP

41

II

TNI Cases Gen_ition

is a distributed commtmicanon protocol, we have to find a way to do testing for this kind

of distribuwd system. Fortunately, the implementawrs of RMP has designed and coded the

implementation of RMP with testability in mind and has built in a lot of conditional

compiling codes to facilitate the testing. The_ include some operation like dumping the

contents of Ordering Queue and Data Queue, assertions about the current state variables.

Actually, based on these additional code, • small testscript language is created to facilitate

the testscript generation. The conformance testing of RMP is based on this testscript

framework [MORR95].

5.2 Test script genermion

Since we adopt a functional testing strategy, the test suite generated has to cover all

specified transitions in the specifications. Our formal models perform verification by

examining all states and along all possible paths. That means, all possible combinations of

the transition paths and the all states are ah'eady explored by the verification system. We

may simply use the explored states and paths as our testing suite. Along this fine, all

required test cases for the functional testing are already explored by the formal models, the

problem is how to extract this information out from the formal models and the verification

system.

Under our testscript framework, tests are executed in a single RMP process. Instead of

using explicit network communication, the testscript framework allows us to input any data

packets and insert some failure conditions. This approach is very similar to the single tim

Murphi model: we are examining a single site's behavior again the specifications under all

possible events. Therefore a test suite is ge_emwd based on the Murphi models.

Our first intent was to modify the Murphi system to output our test suite directly with

cerl_in option flags. We examined the class hierarchy in the Murphi source code and

42

I|

Tes_ _ C:ammttmn

intended to add some command flags to generate test suite. The Murphi system consists of

a complex class hiera_hy and the work can not be done through the modification of a single

class. At the same time, we observed that the Murphi system supports a verbose output

option, by which the system produces verbose every step as it progresses. Hence we

decided that instead of changing the Murphi system directly, we would run the verifier in

verbose mode and direct the output into a file. We build • tool to extract the test s_ttite out

from this file. To extract the explored paths fTom the Murphi verifier's output, we use a text

extraction language called Perl. Perl is a powerful language for text extraction and report

writing. We reconstruct all explored paths and produce • test suite in our _ format.

This is a more efficient way to produce test suite.

We wrote a program to extract the test cases from the Murphi output. Vtrst, two arrays are

consu'ucted to establish the correspondence between the Murphi state number and the

values of state variables. As Murphi performs the search on all possible states, it

increasingly assigns an unique integer to any new state. Secondly, the entire searching tree

is reconstructed based on the verbose output of Murphi verification system. This produces

a nonuniform tree: some states may have only one direct child, while others states may have

sevend children. The entire tree structure is stored in an array of lists. Each array element

contains a list of states which are direct descendents of the current state. Finally, all

explored paths are outputted as test cases by left-most search on the state tree. As tests are

generated, the visited paths are removed from the state tree. This process continues until

the _ate tree becomes empty. For the test output, we follow the SCR requirement table

format and specify the test paths as the current state, the event, the conditions on state

variablea and the next state. This provides a direct input to Jeff's automatic test scripts

gen_amr tool [MORI_SI.

For the normal operation model, we start from the Not_InRing or Not_Token_Site state

43

Test CasesC=,_r_r_ion

and examines all possible transitions according to the s13ecificafions. 291 different paths arc

generated for normal operations only. In Appendix lI, wc list the test suite generated this

tool for the normal operation model without member change extension. It has total of 63

paths. Similar method is applied to n_,ova'y model and 250 test cases are generated.

5.3 Discussion

Up to now, a complete transition cover testing has been performed on the RMP

implementation. But this test suite does not consider the difference between different state

variable cooditions. A complete functional testing should consider the state mode along

with the different values of other state variables. Therefore, the transition cover testing has

fewer test cases than the test cases generated by the Murphi. In our formal models, we

separate the normal operation model from the recovery operation model. If we merge them

together, the entire test set will significantly increase, since the test cases grow

multiplicatively, instead of addifively. The current testing on transition mainly concerns

about the new state by verifying an assertion on the state mode, no other variables are being

verified. Because testing is performed on a single RMP process, all actions to other sites

are left untested. To include the testing on other variables as well as actions, more test cases

need to be executed and the testseript firamework need to be modified to support more

assertions.

Besides providing the full functional coverage test cases, the formal model can also be used

to explore the implementation behavior of RMP by generating the test paths under

particular sequences of events. For example, if the behavior of the system under a certain

sequences of events is suspected, we can generate the testing paths using the formal models

to guide the testing of the implementation under this special sequence.

44

Chapter 6 Conclusion

Based on the formal specifications of RMP, we have cotmructed formal models of RMP at

two different levels and perform verification analysis on the protocol. The automatic

verification systems provide the completeness and consistency check on the protocoL

Through formal analysis, we promote our understanding of the protocol and increase

confidence on the protocol design. Furthermore, during the whole verification and testing

process, we followed an interactive development model between the implementation and

the verification which helps enhance the fidelity between the specifications, formal models

and the implementation. The formal analysis results are directly related to the

implementation through our test suite generation tool based on the verification outt_

During the process of formal analysis of RMP, we learned that the critical step for this

approach is to construct the formal models at an appropriate level of abstraction. The

abstraction level should be suitable for the formal specification support of the underlying

verification systems. At the same time, the coordination and corporation between the

implementation team and verification team is another important factor to this approach. In

a large software development environment, this factor will become even severe. At this

point, we still can not say that we have formally verified RMP. By incorporating the formal

methods into our development cycles, we have increased our confidence on the design and

the quality of the implementation. We believe that more detailed works can be doze and

closer comparison with implcmentation can be achieved.

45

C.,¢mckndoe

Bibliography

[BEIZ95] B. Beizer, Black-Box Testing, John W'dey, 1995

[BURC90] J. Burch, E. Clarke, IC McMillan e_ at, Symbolic Model _g: 220 Sta_

and Beyond, In 5th Annual Symposium on Logic in Computer Science, 428-439, 1990

[CHAN84] J. Chang, N. Maxemchuk, "Reliable _ protocols", ACM Transactiom

on Computer Systems, VoL 2, pp251-273, August, 1984

[DREX92] D. Dill, A. Drexler, A. Hu, C. Yang, Protocol Verification as a Hardware

Design Aid, In _ International Conference on Computer Design: VLSI in Computers

and Processors, 552-525, _ COmputer Society, 1992

[GANN94] J. Gannon" I. Purtilo, M. Zelkowitz., Softwm'¢ Specification, A Comparison of
Formal Methods, Ablex, 1994

HEN80] K. Heninger, Specifying Software Requirement for Complex Systems: New

Techniques and Their Applications, _ Transactions on Software Engineering, VoL 6,

2-13, January, 1980

[HOLZ91] G. J. Holzmann" Design and Validation of Computer Protocols, Prentice Hall

1991

[HOLZ94] G. J. Holzmann" Basic Spin Manual, AT&T Bell Laboratories, Murray Hill

New Jersey, 1994

[HOI_95] G. J. Holzmann" What's new in SPIN Version 2.0, AT&T Bell Laboratories,

New Jersey 07974, 1995

[LENO92] D. Lenoski, J. Laudon, K. Gharachorloo et al, The Stanford DASH

Multiprocessor, Computer Systems Latxratory, Stanford University, 1992

[MELT93] R. Melton, D. Dill, C. Norris, Murphi Annotated Reference Manual, Version

2.6, 1993

[MONT94] T. Montgomery, Design, Implementation, and Verification of the Reliable

Multicast Protocol, MS Thesis, Dept. of Electrical and Computer Engineering, West

Virginia University, 1994

[MORR95] Jeffrey L. Morrison, Methods and Tools used for the Implementation

Vczification of Reliable Multicast _ NASA-IVV-95-004, WVU-SRL-95-004, 1995

[RAJA95] S. Rajah, N. Shankar, and IL Srivas, An integration of Model_g with

Automated Proof Checking, Spinger Verlag Lectm-e Notes in Computer Science, VoL 939,

46

pp. 84-97, 1995

[RUSH93] J. Rushby, N. Shankar, PVS: A Prototype Verification System. In 1 lth

International Conference on Automated Deduction, 748-752, 1992

[WHEA95] B. Wheaten, T. Montgomery, J. CaUahan, Reliable Multicast Protocol

Specifications, RMP beta release

[YODA92] V. Yodaiken, K. Ramamritham, Verification of a Reliable Net Protocol, In

Formal Techniques in Real-T'tme and Fault-Tolerant Systems, 193-215, January, 1992

47

C,¢mcttmkm

Appendix

L Part of RMP Specifications

Events in the RMP specification are one of several things. (1) Arriving packets, (2)

Expired alarms, (3) User events, (4) Exceptional conditions. The specification event types
are"

Event Type

Data
ACK
NACK
cone

NMD
NMA
NL

LCR
RecStart
RecVote
RecACKNL
RecAbort
Failure
TPA
CTPA
RTA
MandLv
commitNL

JoinReq

Description
Data Packet
ACK Packet

ACK Packet
Confirm Packet
Non-Member Data Packet

Non-Member ACK Packet

New List Packet

List Change Request Packet

Recovery Start Packet
Recovery Vote Packet

Recovery ACK New List Packet

Recovery Abort Packet
Retransmission timcout on packet
Token Pass Alarm
Confirm Token Pass Alarm
Random Tinaeout Alarm

Mandatory Leave Alarm
Commit New List Notification

Application request to join group

Smtes:

TS
NTS
GP

PT
JR

LR
NIR

SR

CNL

SV
ACKN

Token Site State
Not Token Site State

Getting Packets State
Passing Token State
Joining Ring State
Leaving Ring State
Not In Ring State
Start Recovery Stare
Created New List State
Sent Vote State

ACK New List Stare

48

AR Abort Recovery State

Token Site State Table:

Event Condition(s) Smm

Data Token Passed PT

Dam !Token l_sed 'IS

NMD Token Passed PT

NMD !Token Passed

LCR Token Passed PT

LCR Token Passed "IS

ACK Named Token "IS

NL Named Token TS

Failure (none) SR

RecStart (none) SV

TPA (none) PT

CTPA (none) "IS

Action(s)

placepacket in DataQ

Pass-Token

place packet in DataQ
Pass-Token

place packet in DataQ
Pass-Token

"IS place packet in DataQ

Pass-Token

pLaccpacket inDataQ

Pass-Token

place packet in DataQ
Pass-Token

Unicast Confirm to

Site Source

Unicast Confirm to

Site Source

Mulficast RecStart

Unicast RecVote to

Reform Site

Generate Null ACK

MulticastNull ACK

UnicastConfirm to

lastToken Site

Passing Token State Table:

Event Condition(s) Stare

Data (none) PT

NMD (none) 171"

IXX (none) Fr

NL !named Token Site NTS

NL named Token Site PT

OrderingQ consistent

Token passed

NL named Token Site TS

Action(s)

place packet in DataQ

Update-OrderingQ
place packet in DataQ

Update-Ord=ingQ
place packet in DataQ

Update-OrdertngQ
Add NL to OrderingQ
Ulx_e43rd_gQ
Add m. to OrderingQ
Upda=-OrdemgQ
Pass-Token

Add NL toOrderingQ

49

NL

ACK

ACK

ACK

ACK

Conf"

Failure

RccStart

OrdcringQ consistent

_To_n pared
named Token Site GP

!OrdcringQ consistent
!named Token Site NTS

named Token Site PT

OrdcringQ consistent

Tokenpassed
named Token Site "IS

(kdefingQ consistent

!Token passed
named Token Site GP

!OrderingQ consistent

Ttmestamp _ NTS

Last token pass

Ttmestamp

(none) SR

(none) SV

Not Token Site State Table

Event

Data

NMD

LCR

NL

NL

Updsz-OrderingQ
Pass-Token

Add NL toOrderingQ

U_laa_O_k_mgQ
Add ACK m OrdcdngQ

NL

Upd_c_XdcrmsQ
Add ACK to OrdcringQ

ul_e.or, kz'tngQ
Pass -Token

AddA(X to OrdcringQ
Ulxtas_C_IcmgQ
ass-Token

Add ACK to OrderingQ

NL

ACK

ACK

ACK

Coition(s)
(none)

(none)

none)

!named Token Site

Stale

NTS

NTS

NTS

NTS

PTnamed Token Site

OrderingQ consistent

Tokenpassed
named Token Site "IS

OrderingQ consistent

]Token passed
named Token Site GP

!OtdcringQ consistent
!named Token Site NTS

u_gQ
Upda_43rde_gQ

50

Multicast RecStart

Unicast RecVote to

Reform Site

Action(s)

placepacketin DataQ

Updaz43rdcringQ
placepacketin DataQ

u_gQ
placepacket inDataQ

Updaz-OrdcrtngQ
Add NL to OrderingQ

Updaz43rderingQ
Add NL to OrdcringQ

Upda_43_dcrtngQ
Pass-Tok_

AddNLto OrderingQ
U_gQ
Pass-Token

Add NL to OrdcringQ

named Token Site PT

OrdcringQ consistent

Token passed
named Token Site TS

Upda_43_k_gQ
Add AC_ to OrdcringQ

Updsz-Of_gQ
Add ACK to OrdcringQ

U_-OrdcrmgQ
Pass -Tokca

Add ACK to OrderingQ

ACK

Failure

RecStart

C0mmitNL

OrdetingQ omsistent

!Totenptmed
named Token Site GP

!OrderingQ consistent

(none) SR

(none) SV

NL does not contain LR

u_gQ
Pass-Tok_

Add ACK toOrderingQ

u_te-ontemgQ
MulticastRecStart

UnicaszRecVote to

Reform Site

Schedule MandLv

site

Getting Packets State Table

Event Condition(s) State Action(s)

Data OrdetingQ consistent PT

Token passed

Data OrdcringQ consistent TS

!Token passed

Dam !OrderingQ consistentGP

NMD OrdcringQ consistcm PT

Token passed

NMD OrderingQ consistent TS

!Token passed

NMD !OrderingQ consistcntGP

LCR (none) GP

ACK OtderingQ consistent PT

Token passed

ACK OrderingQ consistent TS

!Token passed

ACK !OMeringQ consistrmtGP

NL OrderingQ consistent

Tokenpa,aed

NL OrderingQ consistent "IS

!Token passed

NL !OrderingQ consistentGP

place packet in DataQ

ulxme-orde_gQ
Pass-Token

place packet in DataQ

uMate-Orde_gQ
Pass -Token

place packet in DataQ

Update-OrdertngQ
place packet in DataQ

Update-OrdemgQ
Pass -Token

place packet in DataQ

Update-OrdertngQ
Pass-Token

place packet in EMtaQ

Update-OrdemgQ
place packet in DataQ

UMate-OrdemgQ
Add ACK to OrderinsQ

Update-OrdertngQ
Pass-Token

Add ACK to OrderingQ

Upda_-OrdemgQ
Pass-Token

Add ACK toOrdcringQ

Upda__gQ
Add NL toOrderingQ

UIzlate-OrdemgQ
Pass-Token

Add NL to(kdcringQ

Update-OrdcrtngQ
Pass-Token

Add NL to OrdcringQ

51

C_,ocx:kntkm

Failure (none) SR

Re_tart (none) SV

Ul rd, gQ
Multica_ RecStart

Unicast R(_:Votc to

Reform Site

IL Test Suite Generated for RMP Normal Operations

Path 1:1 -> 2 -> 3 -> 8

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) -> NTS

Path 2:1 -> 2 -> 4 -> 9 -> 13 -> 36

NTS @ DATA when (CSI ^ _ ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> NTS

NTS @ DATA when (INCSI ^ TKUP ^ DATA) -> NTS

Path 3:1 -> 2 -> 5 -> 10 -> 14 -> 37

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) -> TS

TS @ TPA when (CSI ^ TKUP ^ TPA) -> PT

Path 4:1 -> 2 -> 5 -> 10 -> 15 -> 38

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) --> TS

TS @ CTPA when (CSI ^ TKUP ^ CTPA) --> TS

Path 5:1 -> 2 -> 5 -> 10 -> 16

NTS @ DATA when (CSI A TKUP A DATA) ->

NTS @ ACK when (CSI ^ TKUP ^ ACK) --> "IS

TS @ DATA when (CSI ^ TKUP A DATA)

Path 6:1 -> 2 -> 5 -> 10 -> 17

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) -> TS

TS @ DATA when (CSI ^ TKP ^ DATA)

Path 7:1 -> 2 -> 5 -> 10 -> 18 -> 41 -> 47 -> 62

biTS @ DATA when (CSI A TIGJP A DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) -> TS

"IS @ ACK when (CSI ^ TKUP ^ ACK) -> TS

TS @ TPA when (CSI ^ TKUP ^ TPA) -> PT

Path 8:1 -> 2 -> 5 -> 10 -> 18 -> 41 -> 48 -> 63

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

52

NTS@ ACK when(CSI^TKUP^ACK) ->TS

TS@ ACK when(CSIATKUP^ACK) ->TS

TS@ CTPA when(CSI^TKUP^CWPA) ->TS

Path 9: I -> 2 -> 5 -> I0 -> 18 -> 41 -> 49

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) ->TS

TS@ ACK when(CSIATKUpAACK) ->TS

TS @ DATA when (CSI ^ TKUP ^ DATA)

Path 10:1 -> 2 -> 5 -> 10 -> 18 -> 41 -> 50

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) ->TS

TS@ ACK whe_(CSIATKUP^ACK) ->TS

TS @ DATA when (CSI ^ TKP ^ DATA)

Path 11:1 -> 2->5-> 10-> 19

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKUP ^ ACK) -> TS

TS@ ACK when(CSI ^TKUPAACK)

Path 12:1 -> 2 -> 6 -> 11 -> 20 -> 42 -> 51 -> 66

NTS @ DATA when (CSI ^ TICUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT@ CFM when (CSI ^ TKtJP ^ CFM) -'> NTS

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

Path 13:1 -> 2 -> 6 -> 11 -> 21

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ DATA when (CSI ^ TKUP ^ DATA)

Path 14:1 -> 2 -> 6 -> 11 -> 22

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) ->PT

PT@ ACK when (CSI ^TKUP^ACK)

Path 15:1 -> 2 -> 6 -> 11 -> 23

NTS @ DATA when (CSI ^ _ ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT@ ACK when (INCSI ^TICUP^ ACK)

Path 16:1 -> 2 -> 6 -> 11 -> 24

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) ->pT

PT @ ACK whelt (C SI ^ TKUP ^ ACK)

53

Path17:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 52

NTS @ DATA when (CSI ^ TIUJP A DATA) -> N'I'S

NTS@ ACK when(CSI^TKP^ACK)->PT

PT@ ACK when (CSI^ TKP ^ ACK) ->PT

PT @ CFM when (CSI ^ TKP ^ CFM)

Path 18:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 53 -> 67

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ ACK when (CSI ^ TKP ^ ACK) -> Fr

PT @ DATA when (CSI ^ TKP ^ DATA) -> PT

Path 19:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 54

NTS @ DATA when (CSI ^ TIU.JP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT@ ACK when(CSIATKpAACK)->PT

PT @ ACK when (CSI ^ TKP ^ ACK)

Path 20:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 55

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS@ ACK when(CSIATKP^ACK)->PT

PT @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ ACK when (INCSI ^ TKP ^ ACK)

Path 21:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 56

NTS @ DATA when (CSI ^ TIGJP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ ACK when (INCSI ^ TKP ^ ACK)

Path 22:1 -> 2 o> 6 -> 11 -> 26

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ ACK when (INCSI ^ TKUP ^ ACK)

Path 23:1 -> 2 -> 7 -> 12 -> 27 -> 44

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ DATA when (INCSI ^ TKUP ^ DATA) -> GP

Path 24:1 -> 2 -> 7 -> 12 -> 28

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ DATA when (CSI ^ TKUP ^ DATA)

54

Path 25:1 -> 2 -> 7 -> 12 -> 29

bITS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

N'rs @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ DATA when (CSI ^ TKP ^ DATA)

Path 26:1 -> 2 -> 7 -> 12 -> 30

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (CSI ^ TIG.JP ^ ACK)

Path 27:1 -> 2 -> 7 -> 12 -> 31 -> 45 -> 57 -> 68

bITS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (CSI ^ TKP ^ ACK) -> FT

FT @ CFNI when (CSI ^ TICUP ^ (2F'M) ->NTS

Path 28:1 -> 2 -> 7 -> 12 -> 31 -> 45 -> 58

NTS @ DATA when (CSI ^ TIG3P ^ DATA) -> NTS

bITS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (CSI ^ TKP ^ ACK) -> PT

PT @ DATA when (CSI ^ TKUP ^ DATA)

Path 29:1 -> 2 -> 7 -> 12 -> 32 -> 46 -> 59 -> 69

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

N'I'S @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ DATA when (INCSI ^ TKUP ^ DATA) -> GP

Path 30:1 -> 2 -> 7 -> 12 -> 32 -> 46 -> 60

bITS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ DATA when (CSI ^ TKUP ^ DATA)

Path 31:1 -> 2 -> 7 -> 12 -> 32 -> 46 -> 61

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ DATA when (CSI ^ TKP ^ DATA)

Path 32:1 -> 2 -> 7 -> 12 -> 33

NTS @ DATA when (CSI ^ TKUP ^ DATA) -> NTS

NTS@ ACK when(INCSI^TKUP^ACK) ->GP

GP@ ACK when (CSI^TKUP^AC K)

Path 33:1 -> 2 -> 7 -> 12 -> 34

55

NTS @ DATA when (CSI ^ TIGJP ^ DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP@ACK when(CSI^TKpAACK)

Path 34:1 -> 2 -> 7 -> 12 -> 35

NTS @ DATA when (CSI ^ TKUP A DATA) -> NTS

NTS @ ACK when (INCSI ^ TKUP ^ ACK) -> GP

GP @ ACK when (INCSI ^ TKUP ^ ACK)

56

APPROVAL OF EXAMINING COMMrI'FEE

This problem report for the Master of Science degree

by Yunqing Wu has been approved for

the Department of Statistics and Computer Science by

Jack Callahan, Chair

Murali Sitaraman, Ph.D.

Raghu Karinthi, Ph.D. Date

